Journal Publications

1. Muzi Li, Felix Benn, Thomas Derra, Nadja Kröger, Max Zinser, Ralf Smeets, Jon M. Molina-Aldareguia, Alexander Kopp, Javier LLorca, Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications. Materials Science and Engineering: C, Volume 119, 2021.

Abstract: Open-porous scaffolds of WE43 Mg alloy with a body-center cubic cell pattern were manufactured by laser powder bed fusion with different strut diameters. The geometry of the unit cells was adequately reproduced during additive manufacturing and the porosity within the struts was minimized. The microstructure of the scaffolds was modified by means of thermal solution and ageing heat treatments and was analysed in detail by means of X-ray microtomography, optical, scanning and transmission electron microscopy. Moreover, the corrosion rates and the mechanical properties of the scaffolds were measured as a function of the strut diameter and metallurgical condition. The microstructure of the as-printed scaffolds contained a mixture of Y-rich oxide particles and Rare Earth-rich intermetallic precipitates. The latter could be modified by heat treatments. The lowest corrosion rates of 2–3 mm/year were found in the as-printed and solution treated scaffolds and they could be reduced to ~0.1 mm/year by surface treatments using plasma electrolytic oxidation. The mechanical properties of the scaffolds improved with the strut diameter: the yield strength increased from 8 to 40 MPa and the elastic modulus improved from 0.2 to 0.8 GPa when the strut diameter increased from 275 μm to 800 μm. Nevertheless, the strength of the scaffolds without plasma electrolytic oxidation treatment decreased rapidly when immersed in simulated body fluid. In vitro bicompatibility tests showed surface treatments by plasma electrolytic oxidation were necessary to ensure cell proliferation in scaffolds with high surface-to-volume ratio.

Link: https://www.sciencedirect.com/science/article/pii/S0928493120335414?via%3Dihub

2. Felix Benn, Nadja Kröger, Max Zinser, Kerstin van Gaalen, Ted J. Vaughan, Ming Yan, Ralf Smeets, Eric Bibiza, Savko Malinov, Fraser Buchanan, Alexander Kopp, Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. Materials Science and Engineering: C, Volume 124, 2021.

Abstract: The further development of future Magnesium based biodegradable implants must consider not only the freedom of design, but also comprise implant volume reduction, as both aspects are crucial for the development of higher functionalised implants, such as plate systems or scaffold grafts in bone replacement therapy. As conventional manufacturing methods such as turning and milling are often accompanied by limitations concerning implant design and functionality, the process of laser powder bed fusion (LPBF) specifically for Magnesium alloys was recently introduced. In addition, the control of the degradation rate remains a key aspect regarding biodegradable implants. Recent studies focusing on the degradation behaviour of additively manufactured Magnesium scaffolds disclosed additional intricacies when compared to conventionally manufactured Magnesium parts, as a notably larger surface area was exposed to the immersion medium and scaffold struts degraded non-uniformly. Moreover, chemical etching as post processing technique is applied to remove sintered powder particles from the surface, altering surface chemistry. In this study, cylindrical Magnesium specimens were manufactured by LPBF and surfaces were consecutively modified by phosphoric etching and machining. Degradation behaviour and biocompatibility were then investigated, revealing that etched samples exhibited the overall lowest degradation rates, but experienced large pit formation, while the reduction of surface roughness resulted in a delay of degradation.

Link: https://www.sciencedirect.com/science/article/pii/S0928493121001557